X
تبلیغات
تب تـلـــخ - نوار موبیوس

تب تـلـــخ

در نــــــگاه پرنــدۀ محبــوس ؛ آسمـــان لبـریـز از پـــروازهـــای بــر بـــــــاد رفتـــه اسـت

نوار موبیوس

شاید تا به حال اسم توپولوژی را شنیده باشید . به نظر ، اسم ثقیلی است و شایر فکر کنید که موضوع خیلی پیشرفته ای باشد که از آن در کتابهای درسی دبیرستان موضوعی تدریس نمی شود . در واقع توپولوژی از شاخه های اصلی و گستردۀ ریاضیات است و در طول سالها پیشرفتهای زیادی کرده است ؛ اما اینگونه نیست که دانش آموزان از درک آن عاجز باشند ، بر عکس ، به سبب داشتن ماهیت هندسی در خیلی از جاهای این علم به کمی شهود نیازمندیم .

توپولوژی در قسمتهای مختلف ریاضیات مانند جبر و آنالیز حقیقی و مختلط و هندسۀ جبری و حتی ترکیبات ، کاربردهای فراوان بسیاری پیدا کرده است .

به طوریکه مطالعه هر یک ازین شاخه ها بدون استفاده از مفاهیم توپولوژیک دشوارتر از آنست که فکرش را بکنید .

مطالعه علم توپولوژی به طور دقیق و آکادمیک نیاز به پیش نیازها و مطالعه زیاد دارد ، ولی بخش های بسیار مهمی از توپولوژی قسمت شهودی آنست . حتما تاکنون رویه ها و صفحه های زیادی را دیده اید ، مثل صفحه معمولی ، کره ، مخروط ، استوانه و یا رویه ها ی پر پیچ و تاب تر .

این رویه ها شباهت ها و تفاوتهائی با هم دارند ، مثلا هر صفحه ( مثل ورق کاغذ ) دارای پشت و روست . همچنین کره و استوانه و بقیه رویه هائی که از آنها نام برده شد ، د ارای این خاصیت اند . از رویه ای که اینجا اشاره می شود دارای این خاصیت نیست . نواری کاغذی را برداشته و یک دور آنرا تاب دهید ، و سپس دو لبه آنرا به هم بچسبانید .

اکنون شما نواری موبیوس دارید .

این رویه ساده و به ظاهر به درد نخور خاصیت جالب توپولوژیک دارد . در واقع نوار موبیوس یک رو بیشتر ندارد .

برای امتحان ، می توانید نوار موبیوس را رنگ کنید . می بینید که بدون برداشتن قلم همه جای آن را می توان با یک رنگ ، رنگ آمیزی نمود . بر خلاف صفحه معمولی ، به اینگونه رویه ها را " رویه های جهت ناپذیر " می نامند .

 

نوشته شده در 85/11/08ساعت 9:31 قبل از ظهر توسط یاسمــــن


آخرين مطالب
»
» تصمیم حاجی
»
» مــــَــکــر زنان
» تقدیر!!!
»
» راز
» جبر
» کفر
» ...

Design By : Pichak